1.點擊下面按鈕復(fù)制微信號
點擊復(fù)制微信號
珀菲特企業(yè)管理
Karen /鄭老師
KEY WORDS OF Corporate Training
參加對象:業(yè)務(wù)支撐、網(wǎng)絡(luò)中心、IT系統(tǒng)部、數(shù)據(jù)分析部等對業(yè)務(wù)數(shù)據(jù)分析有較高要求的相關(guān)專業(yè)人員。
課程費用:電話咨詢(含:講師費、稅費、教材費、會務(wù)費、拍攝費)
授課天數(shù):2 天
授課形式:內(nèi)訓(xùn)
聯(lián)系電話:400-008-4600;13382173255(Karen /鄭老師)
官網(wǎng):ricosauthenticitalian.com
課程背景| Course Background
本數(shù)據(jù)分析與挖掘系列課程包括三個等級的課程:
1、基礎(chǔ)課程,專注于經(jīng)營數(shù)據(jù)的統(tǒng)計與數(shù)據(jù)分析,適合于一般業(yè)務(wù)部門要求的數(shù)據(jù)統(tǒng)計與分析,內(nèi)容系統(tǒng)且全面,由淺入深,使用工具為Excel 2010版本以上。
2、中級課程,專注于行業(yè)數(shù)據(jù)分析與數(shù)據(jù)挖掘,適合于數(shù)據(jù)分析部、業(yè)務(wù)支撐部等對數(shù)據(jù)分析與挖掘要求較高的部門,使用專業(yè)數(shù)據(jù)分析與挖掘工具SPSS v19版本以上。
3、高級課程,專注于較深入的數(shù)據(jù)挖掘技術(shù),包括挖掘模型原理介紹,數(shù)據(jù)建模,挖掘算法,適合于大數(shù)據(jù)系統(tǒng)開發(fā)及數(shù)據(jù)分析專業(yè)人士,需要有一定的數(shù)學(xué)基礎(chǔ)(統(tǒng)計與概率),使用數(shù)據(jù)流挖掘工具Modeler 14.1版本以上。
本課程為高級課程,面向數(shù)據(jù)分析部等專門負責數(shù)據(jù)分析與挖掘的人士。
本課程培訓(xùn)覆蓋以下內(nèi)容:
1、數(shù)據(jù)挖掘標準流程。
2、數(shù)據(jù)挖掘探索性分析。
3、數(shù)據(jù)挖掘模型原理。
本課程從實際的電信運營商的業(yè)務(wù)需求出發(fā),對數(shù)據(jù)分析及數(shù)據(jù)挖掘技術(shù)進行了全面的介紹,通過大量的操作演練,幫助學(xué)員掌握數(shù)據(jù)分析和數(shù)據(jù)挖掘的思路、方法、工具,從大量的企業(yè)經(jīng)營數(shù)據(jù)中進行分析,發(fā)現(xiàn)業(yè)務(wù)運作規(guī)律,進行客戶洞察,挖掘客戶行為特點,消費行為,實現(xiàn)精準營銷,幫助運營團隊深入理解業(yè)務(wù)運作,以達到提升學(xué)員的數(shù)據(jù)綜合分析能力,支撐運營決策的目的。
課程收益| Program Benefits
1、掌握數(shù)據(jù)挖掘的基本過程和步驟。
2、掌握數(shù)據(jù)挖掘的預(yù)處理方法,探索數(shù)據(jù)間的相關(guān)性,為建模打下基礎(chǔ)。
3、理解數(shù)據(jù)挖掘的常見模型,原理及適用場景。
4、熟練掌握Modeler基本操作,能利用Modeler進行數(shù)據(jù)挖掘。
課程大綱| Course Outline
第一部分:數(shù)據(jù)挖掘標準流程
1、數(shù)據(jù)挖掘概述
2、數(shù)據(jù)挖掘的標準流程(CRISP-DM)
商業(yè)理解
數(shù)據(jù)準備
數(shù)據(jù)理解
模型建立
模型評估
模型應(yīng)用
案例:通信客戶流失分析及預(yù)警模型
3、數(shù)據(jù)建模示例
案例:宜家IKE如何通過數(shù)據(jù)挖掘來降低營銷成本提升利潤?
第二部分:數(shù)據(jù)預(yù)處理過程
1、數(shù)據(jù)挖掘處理的一般過程
數(shù)據(jù)源數(shù)據(jù)理解數(shù)據(jù)準備探索分析數(shù)據(jù)建模模型評估
2、數(shù)據(jù)讀入
讀入文本文件
讀入Excel電子表格
讀入SPSS格式文件
讀入數(shù)據(jù)庫數(shù)據(jù)
3、數(shù)據(jù)集成
變量合并(增加變量)
數(shù)據(jù)追加(添加記錄)
4、數(shù)據(jù)理解
取值范圍限定
重復(fù)數(shù)據(jù)處理
缺失值處理
無效值處理
離群點和極端值的修正
數(shù)據(jù)質(zhì)量評估
5、數(shù)據(jù)準備:數(shù)據(jù)處理
數(shù)據(jù)篩選:數(shù)據(jù)抽樣/選擇(減少樣本數(shù)量)
數(shù)據(jù)精簡:數(shù)據(jù)分段/離散化(減少變量的取值)
數(shù)據(jù)平衡:正反樣本比例均衡
其它:排序、分類匯總
6、數(shù)據(jù)準備:變量處理
變量變換:原變量值更新
變量派生:生成新的變量
變量精簡:降維,減少變量個數(shù)
7、基本分析
單變量:數(shù)據(jù)基本描述分析
雙變量:相關(guān)性分析
變量精簡:特征選擇、因子分析
8、特征選擇
特征選擇方法:選擇重要變量,剔除不重要的變量
從變量本身考慮
從輸入變量與目標變量的相關(guān)性考慮
9、因子分析(主成分分析)
因子分析的原理
因子個數(shù)如何選擇
如何解讀因子含義
案例:提取影響電信客戶流失的主成分分析
第三部分:因素影響分析(特征重要性分析)
問題:如何判斷一個因素對另一個因素有影響?
比如營銷費用是否會影響銷售額?產(chǎn)品價格是否會影響銷量?產(chǎn)品的陳列位置是否會影響銷量?
1、常用特征重要性分析的方法
特征選擇(減少變量個數(shù)):相關(guān)分析、方差分析、卡方檢驗
因子分析(減少變量個數(shù)):主成分分析
確定變量個數(shù)參考表
2、相關(guān)分析(數(shù)值+數(shù)值,相關(guān)程度計算)
問題:這兩個屬性是否會相互影響?影響程度大嗎?
相關(guān)分析概述
相關(guān)系數(shù)計算公式
相關(guān)性假設(shè)檢驗
案例:通信基本費用與開通月數(shù)的相關(guān)分析
3、方差分析(分類+數(shù)值,影響因素分析)
問題:哪些才是影響銷量的關(guān)鍵因素?
方差分析原理
方差分析的步驟
方差分析適用場景
案例:開通月數(shù)對客戶流失的影響分析
4、列聯(lián)分析(分類+分類,影響因素分析)
列聯(lián)表的原理
卡方檢驗的步驟
列聯(lián)表分析的適用場景
案例:套餐類型對對客戶流失的影響分析
第四部分:數(shù)值預(yù)測模型篇
問題:如何預(yù)測產(chǎn)品的銷量/銷售金額?如果產(chǎn)品跟隨季節(jié)性變動,該如何預(yù)測?新產(chǎn)品上市,如果評估銷量上限及銷售增速?
1、銷量預(yù)測與市場預(yù)測——讓你看得更遠
2、回歸預(yù)測/回歸分析
問題:如何預(yù)測未來的銷售量(定量分析)?
回歸分析的基本原理和應(yīng)用場景
回歸分析的種類(一元/多元、線性/曲線)
得到回歸方程的幾種常用方法
回歸分析的五個步驟與結(jié)果解讀
回歸預(yù)測結(jié)果評估(如何評估預(yù)測質(zhì)量,如何選擇最佳回歸模型)
演練:散點圖找推廣費用與銷售額的關(guān)系(一元線性回歸)
演練:推廣費用、辦公費用與銷售額的關(guān)系(多元線性回歸)
演練:讓你的營銷費用預(yù)算更準確
演練:如何選擇最佳的回歸預(yù)測模型(曲線回歸)
帶分類變量的回歸預(yù)測
演練:汽車季度銷量預(yù)測
演練:工齡、性別與終端銷量的關(guān)系
演練:如何評估銷售目標與資源配置(營業(yè)廳)
3、時序預(yù)測
問題:隨著時間變化,未來的銷量變化趨勢如何?
時序分析的應(yīng)用場景(基于時間的變化規(guī)律)
移動平均MA的預(yù)測原理
指數(shù)平滑ES的預(yù)測原理
自回歸移動平均ARIMA模型
如何評估預(yù)測值的準確性?
案例:銷售額的時序預(yù)測及評估
演練:汽車銷量預(yù)測及評估
演練:電視機銷量預(yù)測分析
演練:上海證券交易所綜合指數(shù)收益率序列分析
演練:服裝銷售數(shù)據(jù)季節(jié)性趨勢預(yù)測分析
4、季節(jié)性預(yù)測模型
季節(jié)性回歸模型的參數(shù)
常用季節(jié)性預(yù)測模型(相加、相乘)
案例:美國航空旅客里程的季節(jié)性趨勢分析
案例:產(chǎn)品銷售季節(jié)性趨勢預(yù)測分析
5、新產(chǎn)品預(yù)測模型與S曲線
如何評估銷量增長的拐點
珀爾曲線與龔鉑茲曲線
案例:如何預(yù)測產(chǎn)品的銷售增長拐點,以及銷量上限
演戲:預(yù)測IPad產(chǎn)品的銷量
6、自定義模型(如何利用規(guī)劃求解進行自定義模型)
案例:如何對餐廳客流量進行建模及模型優(yōu)化
第五部分:回歸模型優(yōu)化篇
1、回歸模型的基本原理
三個基本概念:總變差、回歸變差、剩余變差
方程的顯著性檢驗:是否可以做回歸分析?
擬合優(yōu)度檢驗:回歸模型的質(zhì)量評估?
因素的顯著性檢驗:自變量是否可用?
理解標準誤差的含義:預(yù)測的準確性?
2、模型優(yōu)化思路:尋找最佳回歸擬合線
如何處理異常數(shù)據(jù)(殘差與異常值排除)
如何剔除非顯著因素(因素顯著性檢驗)
如何進行非線性關(guān)系檢驗
如何進行相互作用檢驗
如何進行多重共線性檢驗
如何檢驗誤差項
如何判斷模型過擬合
案例:模型優(yōu)化案例
第六部分:分類預(yù)測模型
1、分類概述
分類的基本過程
常見分類預(yù)測模型
2、邏輯回歸分析模型
問題:如果評估用戶是否購買產(chǎn)品的概率?
邏輯回歸分析
邏輯回歸的原理
案例:客戶購買預(yù)測分析(二元邏輯回歸)
3、決策樹分類
問題:如何提取客戶流失者、拖欠貨款者的特征?如何預(yù)測其流失的概率?
決策樹分類的原理
決策樹的三個關(guān)鍵問題
決策樹算法
如何評估分類模型的性能(查準率、查全率)
案例:識別銀行欠貨風險,提取欠貨者的特征
案例:客戶流失預(yù)警與客戶挽留模型
4、神經(jīng)網(wǎng)絡(luò)
神經(jīng)網(wǎng)絡(luò)概述
神經(jīng)元工作原理
神經(jīng)網(wǎng)絡(luò)的建立步驟
B-P反向傳播網(wǎng)絡(luò)(MLP)
徑向基函數(shù)網(wǎng)絡(luò)(RBF)
5、支持向量機
SVM基本原理
維災(zāi)難與核函數(shù)
6、樸素貝葉斯分類
條件概率
樸素貝葉斯
TAN貝葉斯網(wǎng)絡(luò)
馬爾科夫毯網(wǎng)絡(luò)
第七部分:客戶細分與聚類
1、客戶細分常用方法
2、聚類分析(Clustering)
問題:如何對市場進行細分?如何提取客戶特征,從而對產(chǎn)品進行市場定位?
聚類方法原理介紹
聚類方法適用場景
如何細分客戶群,并提取出客戶群的特征?
K均值聚類(快速聚類)
兩步聚類
案例:移動三大品牌細分市場合適嗎?
演練:寶潔公司如何選擇新產(chǎn)品試銷區(qū)域?
3、RFM模型分析
RFM模型,更深入了解你的客戶價值
RFM模型與市場策略
RFM模型與活躍度
案例:淘寶客戶價值評估與促銷名單
第八部分:產(chǎn)品推薦與關(guān)聯(lián)分析
問題:購買面包的人是否也會購買牛奶?他們同時購買哪些產(chǎn)品?
關(guān)聯(lián)規(guī)則原理介紹
關(guān)聯(lián)規(guī)則適用場景:交叉銷售、捆綁營銷、產(chǎn)品布局
案例:超市商品交叉銷售與布局優(yōu)化(關(guān)聯(lián)分析)
結(jié)束:課程總結(jié)與問題答疑。
講師背景| Introduction to lecturers
講師:傅一航
傅一航,華為系大數(shù)據(jù)專家。
計算機軟件與理論碩士研究生(研究方向:數(shù)據(jù)挖掘、搜索引擎)。在華為工作十年,五項國家專利,在華為工作期間獲得華為數(shù)項獎項,曾在英國、日本、荷蘭和比利時等海外市場做項目,對大數(shù)據(jù)技術(shù)有深入的研究。
傅老師專注于大數(shù)據(jù)分析與挖掘、機器學(xué)習(xí)等應(yīng)用技術(shù),以及大數(shù)據(jù)系統(tǒng)部署解決方案。旨在將大數(shù)據(jù)的數(shù)據(jù)分析、數(shù)據(jù)挖掘、數(shù)據(jù)建模應(yīng)用于行業(yè)及商業(yè)領(lǐng)域,解決行業(yè)實際的問題。
1、讓管理更高效:將大數(shù)據(jù)應(yīng)用于企業(yè)管理,用大數(shù)據(jù)探索企業(yè)發(fā)展規(guī)律和行業(yè)發(fā)展趨勢,有效預(yù)判市場變化和需求,基于規(guī)律和預(yù)判來進行管理決策,并實現(xiàn)組織架構(gòu)演變、人才新技能培養(yǎng)、生產(chǎn)流程優(yōu)化,以及服務(wù)效率提升,最終匹配市場未來的變化需要,提升企業(yè)管理效率。
2、讓決策更科學(xué):將大數(shù)據(jù)應(yīng)用于運營決策,用大數(shù)據(jù)呈現(xiàn)企業(yè)整體經(jīng)營狀況,診斷運營問題和風險,找到業(yè)務(wù)短板,全面理解組織、產(chǎn)品、人員、營銷、財務(wù)等要素間的相關(guān)性,實現(xiàn)企業(yè)資源的最優(yōu)化配置,提升科學(xué)決策能力。
3、讓營銷更精準:將大數(shù)據(jù)應(yīng)用于市場營銷,解決營銷中的用戶群細分和品牌定位,客戶價值評估,分析用戶需求,產(chǎn)品設(shè)計優(yōu)化,產(chǎn)品最優(yōu)定價等實際問題,實現(xiàn)精準營銷和精準推薦,以最小的營銷成本實現(xiàn)最大化的營銷效果。
傅老師目前致力于將大數(shù)據(jù)技術(shù)應(yīng)用于通信、金融、電商、互聯(lián)網(wǎng)、制造業(yè)、政府等領(lǐng)域。傅老師的課程最大特色:實戰(zhàn)性強!“圍繞業(yè)務(wù)問題+搭建分析框架+運用分析方法+建立分析模型+熟悉分析工具+形成業(yè)務(wù)策略”。以商業(yè)目標為起點,基于實際的業(yè)務(wù)應(yīng)用場景(明確目的),搭建全面系統(tǒng)的業(yè)務(wù)框架和分析維度(分析思路),選擇最合適的方法(分析方法),深入淺出的理論講解(分析模型),使用簡單實用的工具操作(分析工具),對分析結(jié)果進行有效的解讀(數(shù)據(jù)可視化),最終形成具體的業(yè)務(wù)建議,實現(xiàn)業(yè)務(wù)分析/數(shù)據(jù)分析的閉環(huán)。
重思路:數(shù)據(jù)思維+分析框架;
重體系:分析維度+分析過程;
重實戰(zhàn):分析方法+分析模型+分析工具;
重落地:可視化+數(shù)據(jù)解讀+業(yè)務(wù)策略。
董事長總經(jīng)理高管的課程:
《數(shù)字化戰(zhàn)略與商業(yè)變革》
《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
《大數(shù)據(jù)產(chǎn)業(yè)現(xiàn)狀及應(yīng)用創(chuàng)新》
《領(lǐng)導(dǎo)干部的大數(shù)據(jù)思維與決策》
大數(shù)據(jù)市場營銷的課程:
《大數(shù)據(jù)時代的精準營銷》
《“數(shù)”說營銷----大數(shù)據(jù)營銷分析實戰(zhàn)與沙盤》
《市場營銷大數(shù)據(jù)分析實戰(zhàn)培訓(xùn)》
《大數(shù)據(jù)助力市場營銷與服務(wù)提升》
大數(shù)據(jù)分析應(yīng)用類的課程:
《大數(shù)據(jù)分析綜合能力提升實戰(zhàn)》
《大數(shù)據(jù)建模與模型優(yōu)化實戰(zhàn)培訓(xùn)》
《大數(shù)據(jù)挖掘之SPSS工具入門與提高》
《金融行業(yè)風險預(yù)測模式實戰(zhàn)培訓(xùn)》
大數(shù)據(jù)分析語言Python課程:
《Python開發(fā)基礎(chǔ)實戰(zhàn)培訓(xùn)》
《Python數(shù)據(jù)分析與可視化實戰(zhàn)》
《Python數(shù)據(jù)建模與模型優(yōu)化實戰(zhàn)》
《Python數(shù)據(jù)挖掘?qū)n}分析》
《Python機器學(xué)習(xí)算法實戰(zhàn)》
《Python RPA辦公流程自動化》
傅老師曾提供過培訓(xùn)咨詢服務(wù)的客戶遍及通信、金融、交通、制造、政府等行業(yè),其中包括中移動、華為、施耐德、富士康、平安集團、中國銀行、西部航空、廣州地鐵、東風日產(chǎn)、廣州稅務(wù)、良品鋪子、中冶賽迪、埃森哲、海天集團、正泰電器等公司和單位。
銀行/郵政/保險/證券等金融行業(yè)培訓(xùn)客戶
中國銀行:《大數(shù)據(jù)變革與商業(yè)模式創(chuàng)新》《大數(shù)據(jù)時代的精準營銷》
中信銀行:《大數(shù)據(jù)分析與挖掘綜合能力提升》《Python風險預(yù)測建?!?
招商銀行:《大數(shù)據(jù)分析綜合能力提升》《數(shù)說營銷》《Python數(shù)據(jù)分析》
平安銀行:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》《數(shù)說營銷》《Python數(shù)據(jù)分析》
廣發(fā)銀行:《大數(shù)據(jù)下的精準營銷》《大數(shù)據(jù)分析綜合能力提升》
光大銀行:《大數(shù)據(jù)分析與數(shù)據(jù)挖掘應(yīng)用》《大數(shù)據(jù)時代下的精準營銷》
交通銀行:《大數(shù)據(jù)時代的精準營銷》《數(shù)說營銷實戰(zhàn)》
建設(shè)銀行:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
浦發(fā)銀行:《大數(shù)據(jù)時代下的精準營銷》
農(nóng)業(yè)銀行:《大數(shù)據(jù)分析綜合能力提升》《Python數(shù)據(jù)分析、數(shù)據(jù)建模》
民生銀行:《Python數(shù)據(jù)建模與模型優(yōu)化》
農(nóng)商行:《大數(shù)據(jù)分析綜合能力》《Python數(shù)據(jù)分析》《Python數(shù)據(jù)建?!?
微眾銀行:《大數(shù)據(jù)分析綜合能力提升》
廣東郵政:《大數(shù)據(jù)分析與挖掘綜合能力提升》《大數(shù)據(jù)建模與模型優(yōu)化》
廣西郵政:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
山東郵政:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
平安集團:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
平安產(chǎn)險:《大數(shù)據(jù)分析綜合能力提升》《大數(shù)據(jù)建模與優(yōu)化》
平安人壽:《大數(shù)據(jù)分析與應(yīng)用實戰(zhàn)》《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》《大數(shù)據(jù)時代下的精準營銷》
平安醫(yī)保科技:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
天安財險:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
中華人壽:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
太平洋保險:《大數(shù)據(jù)分析綜合能力提升》
廣電銀通:《大數(shù)據(jù)綜合能力提升》
安信證券:《大數(shù)據(jù)時代下的金融發(fā)展》
平安普惠:《Hadoop解決方案技術(shù)培訓(xùn)》
廣汽理匯:《大數(shù)據(jù)思維與數(shù)據(jù)分析實戰(zhàn)》
金融壹帳通:《大數(shù)據(jù)分析與挖掘綜合能力提升實戰(zhàn)》
陸金所:《大數(shù)據(jù)分析綜合能力提升》
中金所:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
馬上消費金額:《數(shù)說營銷實戰(zhàn)》
易鑫集團:《大數(shù)據(jù)分析綜合能力提升》
五礦經(jīng)易期貨:《大數(shù)據(jù)分析綜合能力提升》
杭州銀貨通科技:《大數(shù)據(jù)產(chǎn)業(yè)發(fā)展及應(yīng)用創(chuàng)新》
中郵金融科技:《Python基礎(chǔ)與數(shù)據(jù)分析》
……
制造行業(yè)培訓(xùn)客戶
施耐德:《大數(shù)據(jù)分析》《大數(shù)據(jù)挖掘》《大數(shù)據(jù)建模及優(yōu)化》
富士康:《大數(shù)據(jù)分析綜合能力提升》
中冶賽迪:《Python數(shù)據(jù)分析》《Python數(shù)據(jù)建?!?
正泰電器:《大數(shù)據(jù)分析實戰(zhàn)》《大數(shù)據(jù)建模及優(yōu)化》
海天集團:《大數(shù)據(jù)分析實戰(zhàn)》《大數(shù)據(jù)思維與可視化》
ABB:《大數(shù)據(jù)分析實戰(zhàn)培訓(xùn)》
延峰海納川:《Python基礎(chǔ)與數(shù)據(jù)分析》《Python數(shù)據(jù)建?!贰?/span>RAP辦公自動化》
昌碩科技:《大數(shù)據(jù)分析實戰(zhàn)》
村田電子:《大數(shù)據(jù)分析綜合能力提升》
博西家用電器:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
深圳YKK吉田拉鏈:《大數(shù)據(jù)分析綜合能力提升》
雅圖仕:《大數(shù)據(jù)分析綜合能力提升》
索菲亞:《大數(shù)據(jù)分析綜合能力提升》
沁園:《大數(shù)據(jù)分析綜合能力提升》
浦林成山:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
翔路騰龍:《大數(shù)據(jù)產(chǎn)業(yè)現(xiàn)狀及應(yīng)用創(chuàng)新》
泰科:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
萬家樂:《Python基礎(chǔ)與數(shù)據(jù)分析》
億力機電:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
深圳大疆:《數(shù)說營銷》
一汽解放錫柴:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
通信/運營商行業(yè)培訓(xùn)客戶
華為技術(shù):《話務(wù)量預(yù)測與排班管理》
聯(lián)通研究院:《大數(shù)據(jù)預(yù)測建模優(yōu)化》《Python數(shù)據(jù)分析》
北京聯(lián)通:《大數(shù)據(jù)分析綜合能力提升》《數(shù)說營銷》《數(shù)據(jù)挖掘?qū)n}分析》
廣州電信:《大數(shù)據(jù)時代的精準營銷》
北京電信:《大數(shù)據(jù)分析綜合能力提升》
香港電信:《大數(shù)據(jù)精準營銷實戰(zhàn)》
上海電信:《渠道大數(shù)據(jù)分析與挖掘思路及方法》兩期
河北電信:《數(shù)據(jù)化運營下的大數(shù)據(jù)分析綜合能力提升實戰(zhàn)》
南京電信:《大數(shù)據(jù)視圖支撐精準化營銷》
佛山電信:《數(shù)據(jù)挖掘技術(shù)及其應(yīng)用培訓(xùn)》
泉州電信:《大數(shù)據(jù)挖掘、信息分析及應(yīng)用培訓(xùn)》
湖北聯(lián)通:《大數(shù)據(jù)分析與商業(yè)智能》
廣東聯(lián)通:《數(shù)據(jù)分析與數(shù)據(jù)挖掘?qū)崙?zhàn)培訓(xùn)》兩期
江蘇聯(lián)通:《大數(shù)據(jù)分析綜合能力提升》
吉林聯(lián)通:《大數(shù)據(jù)分析綜合能力提升-中級》
烏魯木齊聯(lián)通:《大數(shù)據(jù)分析綜合能力提升》
上海移動:《大數(shù)據(jù)分析與挖掘、建模及優(yōu)化》叁期
浙江移動:《大數(shù)據(jù)分析與數(shù)據(jù)挖掘應(yīng)用實戰(zhàn)》
江蘇移動:《大數(shù)據(jù)精準營銷技能提升實戰(zhàn)》
深圳移動:《大數(shù)據(jù)分析綜合能力提升》
廣西移動:《大數(shù)據(jù)發(fā)展趨勢及在公司營銷領(lǐng)域的應(yīng)用》
遼寧移動2期:《數(shù)據(jù)分析方法與經(jīng)營分析技巧》
泉州移動3期:《數(shù)說營銷—市場營銷數(shù)據(jù)分析與挖掘應(yīng)用》
德陽移動2期:《大數(shù)據(jù)挖掘與建模優(yōu)化實戰(zhàn)培訓(xùn)》
浙江移動:《大數(shù)據(jù)產(chǎn)品營銷能力提升》
四川移動:《大數(shù)據(jù)分析與挖掘綜合能力提升》
吉林移動:《數(shù)據(jù)分析與數(shù)據(jù)挖掘培訓(xùn)》;
貴州移動:《“數(shù)”說營銷----大數(shù)據(jù)營銷實戰(zhàn)與沙盤》
海南移動:《基于大數(shù)據(jù)運營的用戶行為分析與精準定位》
山東移動:《大數(shù)據(jù)分析綜合能力提升》
深圳移動:《大數(shù)據(jù)在行業(yè)內(nèi)外的應(yīng)用》
中國移動終端公司:《大數(shù)據(jù)分析綜合能力提升培訓(xùn)》
中山移動:《“數(shù)”說營銷----大數(shù)據(jù)營銷實戰(zhàn)與沙盤》
東莞移動:《“數(shù)”說營銷----大數(shù)據(jù)營銷實戰(zhàn)與沙盤》
成都移動:《數(shù)字化運營下的數(shù)據(jù)分析與數(shù)據(jù)挖掘》
眉山移動2期:《大數(shù)據(jù)分析綜合能力提升》
云浮移動:《大數(shù)據(jù)挖掘和信息提煉專項培訓(xùn)》
陽江移動:《小數(shù)據(jù)·大運營--運營數(shù)據(jù)的分析與挖掘》
德陽移動:《電信運營商市場營銷數(shù)據(jù)挖掘應(yīng)用典型案例》
陜西在線:《“數(shù)”說營銷----大數(shù)據(jù)營銷實戰(zhàn)與沙盤》
四川在線:《“數(shù)”說營銷----大數(shù)據(jù)營銷實戰(zhàn)與沙盤》
大連移動:《“數(shù)”說營銷----大數(shù)據(jù)營銷實戰(zhàn)與沙盤》
內(nèi)蒙古移動:《大數(shù)據(jù)分析與Hadoop大數(shù)據(jù)解決方案》
貴州中移通信:《SPSS數(shù)據(jù)分析與數(shù)據(jù)挖掘應(yīng)用實戰(zhàn)》
天翼愛音樂:《大數(shù)據(jù)分析綜合能力提升》
……
能源電力交通物流培訓(xùn)客戶
西部航空:《數(shù)字化運營下的數(shù)據(jù)分析與數(shù)據(jù)挖掘應(yīng)用培訓(xùn)》
貴賓公司:《市場營銷數(shù)據(jù)的分析》
海南航空:《利用大數(shù)據(jù)營銷提升航線收益》
南方航空:《大數(shù)據(jù)精準營銷實戰(zhàn)》
深圳公交集團:《大數(shù)據(jù)與智慧交通》
東風日產(chǎn):《大數(shù)據(jù)分析與挖掘綜合能力提升》
柳州上汽五菱:《大數(shù)據(jù)下的精準營銷實戰(zhàn)》
東風商用:《數(shù)說營銷實戰(zhàn)》
東風出行:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
廣州地鐵:《大數(shù)據(jù)分析與數(shù)據(jù)挖掘培訓(xùn)》兩期
富維江森:《數(shù)字化運營下的數(shù)據(jù)分析與數(shù)據(jù)挖掘應(yīng)用培訓(xùn)》
保時捷:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》《大數(shù)據(jù)分析實戰(zhàn)》
忻州供電局:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
延長殼牌:《大數(shù)據(jù)分析與挖掘綜合能力提升》
寶雞國電:《大數(shù)據(jù)分析與挖掘》兩期
寧夏國電:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》兩期
云南電網(wǎng):《大數(shù)據(jù)時代下的精準營銷》
天津國電:《大數(shù)據(jù)分析綜合能力提升》
上海城投水務(wù):《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
深圳水務(wù):《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
中海油:《大數(shù)據(jù)分析實戰(zhàn)》
神南礦業(yè):《大數(shù)據(jù)產(chǎn)業(yè)發(fā)展與應(yīng)用創(chuàng)新》
珠海港興:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
神南礦業(yè):《大數(shù)據(jù)產(chǎn)業(yè)發(fā)展與應(yīng)用創(chuàng)新》
安能物流:《大數(shù)據(jù)分析綜合能力提升》
順豐速運:《大數(shù)據(jù)分析綜合能力提升》《數(shù)據(jù)精準營銷實戰(zhàn)》
……
直銷/零售/電商/互聯(lián)網(wǎng)等行業(yè)培訓(xùn)客戶
良品鋪子:《大數(shù)據(jù)分析綜合能力提升》兩期
周大福:《大數(shù)據(jù)分析與挖掘?qū)崙?zhàn)培訓(xùn)》
新時代:《問題的挖掘、分析—數(shù)據(jù)分析技巧》兩期培訓(xùn)
深圳欣盛商:《電商大數(shù)據(jù)分析》
無限極:《大數(shù)據(jù)分析綜合能力提升》兩期
歐萊雅:《Python根因分析與預(yù)測》
玫琳凱:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》《大數(shù)據(jù)分析實戰(zhàn)》
上海找鋼網(wǎng):《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
頂新國際:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
華潤集團:《大數(shù)據(jù)時代下的精準營銷》
壹藥網(wǎng):《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
其他行業(yè)部分培訓(xùn)客戶
埃森哲:《Python基礎(chǔ)與數(shù)據(jù)分析》《Python數(shù)據(jù)分析與可視化》《RAP流程自動化化》
嶺南集團:《大數(shù)據(jù)時代下的精準營銷》
贛州監(jiān)獄:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》叁期
貴州中煙:《互聯(lián)網(wǎng)+時代的大數(shù)據(jù)思維》
廣州稅務(wù):《大數(shù)據(jù)分析與挖掘?qū)崙?zhàn)》叁期
西部數(shù)據(jù):《大數(shù)據(jù)分析綜合能力提升》
文思海輝:《大數(shù)據(jù)分析綜合能力提升》
內(nèi)蒙古社科聯(lián):《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
深圳會展中心:《大數(shù)據(jù)價值實現(xiàn)與應(yīng)用創(chuàng)新》
重慶國際復(fù)材:《大數(shù)據(jù)思維與應(yīng)用創(chuàng)新》
挑戰(zhàn)牧業(yè):《大數(shù)據(jù)分析綜合能力提升》
廣東立白:《大數(shù)據(jù)分析綜合能力提升》
……
Service Procedure
Service Advantages
我們擁有幾百家各類企業(yè)的項目咨詢基礎(chǔ)、多行業(yè)數(shù)據(jù)庫、多年的行業(yè)經(jīng)驗,并對企業(yè)進行深度研究和剖析,總結(jié)出一系列深入的觀點和經(jīng)驗。
我們的咨詢方案的設(shè)計過程秉承“知行合一”的理念,既具備理論知識,又重視項目的實操性。經(jīng)過多年的經(jīng)驗,我們積累了豐富的案例庫,涉及18個領(lǐng)域,近千個案例,并將案例與咨詢項目完美結(jié)合。
我們的咨詢團隊分布于各大領(lǐng)域,擁有多年的業(yè)內(nèi)從業(yè)經(jīng)驗,具備豐富的企業(yè)管理實操經(jīng)驗。在定制咨詢方案前,我們會為客戶匹配多位業(yè)內(nèi)咨詢師,供客戶進行比對選擇,根據(jù)客戶需求及問題,定制化地設(shè)計咨詢方案,確保項目的順利進行。
ABOUT PERFECT CONSULTANT
We are? Talent training and intelligent manufacturing solutions provider.
What we do ?Provide organizational performance improvement and talent learning development business.
Customers:Each year, we serves more than 1000 enterprises (including fortune 500 enterprises, joint venture factories, state-owned enterprises, rapidly developing private enterprises and industry-leading enterprises).
10年更懂你
中大型企業(yè)共同選擇
累計培訓(xùn)學(xué)員
現(xiàn)有公開課
現(xiàn)有內(nèi)訓(xùn)課
現(xiàn)有在線課程
輻射城市
OFFLINE BUSINESS
高層團隊引導(dǎo)工作坊
中層管理內(nèi)訓(xùn)
基層管理內(nèi)訓(xùn)
人才梯隊建設(shè)咨詢項目
工廠運營咨詢項目
TTT內(nèi)訓(xùn)師咨詢項目
領(lǐng)導(dǎo)力公開課
精益智造公開課
個人效能公開課
ONLINE BUSINESS
數(shù)字化搭建企業(yè)學(xué)習(xí)平臺,加速人才培養(yǎng)
功能包含:作業(yè)管理、考試管理、簽到管理、課程學(xué)習(xí)、排名管理、微課上傳、直播等
700門在線課程,任選10門課程體驗,掃碼注冊體驗
PART OF TRAINED COMPANIES INCLUDED BUT NOT LIMITED TO
Copyright © 2006-2023 PerfectPX All rights reserved. 蘇州珀菲特企業(yè)管理顧問有限公司 版權(quán)所有 蘇ICP備11056827號-1 蘇公網(wǎng)安備 32050702010145號